报 告 题 目:Liouville-type theorems and existence of solutions for quasilinear elliptic equations with nonlinear gradient terms
报 告 人:张正策 教授
报 告 时 间:2024年11月14日上午10:00
地点:威尼斯886699明向校区威尼斯886699602
内容简介:
In this talk, we consider two properties of positive weak solutions of quasilinear elliptic equation , with nonlinear gradient terms. First, we show a Liouville-type theorem for positive weak solutions of the equation involving the m -Laplacian operator. The technique of Bernstein gradient estimates is ultilized to study the case p<m. Moreover, a Liouville-type theorem for supersolutions under subcritical range of exponents is also established. Then, we use a degree argument to obtain the existence of positive weak solutions for a nonlinear Dirichlet problem of the type , with f satisfying certain structure conditions. Our proof is based on a priori estimates, which will be accomplished by using a blow-up argument together with the Liouville-type theorem in the half-space. As another application, some new Harnack inequalities are proved. This is a joint work with Caihong Chang and Bei Hu.
报告人简介:
张正策,2003年博士毕业于西安交通大学理学院,现任西安交通大学数学与统计学院教授,博士生导师,从事非线性偏微分方程理论及其应用研究。近年来, 主要对非线性抛物方程的梯度爆破和自由边界问题开展定性研究,主持国家自然科学基金和省部级基金多项,在国际学术刊物CVPDE, JDE, DCDS, Siam J Numer Anal, NA等发表论文80余篇。多次应邀参加CMSIC, AIMS和AMS Spring Section等国际学术会议并作报告,担任美国数学会评论员。